
Advances in Knowledge-Based Systems, Data Science, and Cybersecurity Received 19-07-2024; Accepted 27-09-2024; Published 03-10-2024

Development of an Intrusion Detection System Leveraging Deep
Learning Model Classification

Osa Edosa edosa.osa@uniben.edu
Department of Electrical/Electronic Engineering,
Faculty of Engineering, University of Benin,
P.M.B. 1154, Benin City, Nigeria

Ibhaze Augustus E. eibhaze@unilag.edu.ng
Department of Electrical and Electronic Engineering,
Faculty of Engineering, University of Lagos,
Lagos 100213, Nigeria

Ekoko Erumena C. erumena.ekoko@uniben.edu
Department of Electrical/Electronic Engineering,
Faculty of Engineering, University of Benin,
P.M.B. 1154, Benin City, Nigeria

Orukpe Patience E. patience.orukpe@uniben.edu
Department of Electrical/Electronic Engineering,
Faculty of Engineering, University of Benin,
P.M.B. 1154, Benin City, Nigeria

Corresponding Author: Osa Edosa

Copyright © 2024 Osa Edosa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract
The implementation of Deep Learning in development of models to act as interventions for
addressing the continuously evolving spate of cybersecurity issues has become a noteworthy
paradigm. This occurs since cyber attacks could be modeled or represented in terms of data
records which can serve as bases for developing intrusion detection systems. This paper
proposes an intrusion detection system that leverages deep learning techniques for attack
classification. Two deep learning models were developed, a Deep Neural Network (DNN)
with ReLU activation as well as Tabular model using the fastai deep learning library. The
NSL-KDD benchmark dataset was imported and preprocessed for each model development.
After evaluating the models, the fastai model with accuracy of 84 percent surpassed the other
DNN with accuracy of 79 percent on NSL-KDD test data.

Keywords: Cybersecurity, NSL-KDD, Deep Learning, Keras, fastai, Intrusion.

38
Citation: Osa Edosa et al. Development of an Intrusion Detection System Leveraging Deep Learning Model Classification. Advances in
Knowledge-Based Systems, Data Science, and Cybersecurity. Research 2024;1(1):2. Pages: 38-48

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

1. INTRODUCTION

The cyberspace is a constantly evolving environment where a continuous effort to maintain the
confidentiality, integrity and availability of information is being exerted by cyber security special-
ists. This is due to the continuous innovations and crafts by attackers on various infrastructure in
the cyberspace, be they software or hardware. It is therefore imperative for efficient measures to
be incorporated for mitigating the activities of attackers in computer networks. Intrusion detection
systems (IDSs) serve as major frontline defence mechanisms against malicious use of the internet
as well as other networks [1]. An intrusion detection system represents an integration of techniques
implemented for detecting malicious traffic on computer networks. Traditional IDSs such as the
Signature-based types can perform well against already known attacks since a dictionary of such
attacks is preconfigured in their databases. However, such systems are deficient against new or
zero-day attacks. Zero-day attacks are more suitably addressed using Anomaly-based IDSs which
investigate underlying behaviour of traffic and compare such behaviour with already established
proper network behaviour. When an anomaly or strange occurrence is perceived by such systems,
an alert is triggered. Deep learning which indicates a secondary subset of artificial intelligence
is being utilized for the development of relevant and efficient Anomaly-based intrusion detection
systems and various authors have therefore proposed systems in this regard. Deep learning is a
subset of machine learning that is modeled in likeness to the neuronic operations of the human brain.
This subset performs better than classical machine learning algorithms in the case of large dataset
analysis. Since benchmark datasets employed in cybersecurity research for intrusion detection are
relatively large, deep learning approaches are preferred to classical machine learning since they have
deeper levels of data abstraction. Furthermore, deep learning algorithms generalize to unseen data
better and thus can detect novel attacks with higher quality [2]. Authors in [3], used Long Short Term
Memory (LSTM) technique with the NSL-KDD dataset and utilized the accuracy on the test data
(KDD Test+) as the primary metric for assessing their model performances. The proposed LSTM
model yielded accuracy scores of 74.77% and 68.78% for the binary and multiclass classification
scenarios, respectively. In [4], an IDS using Deep Learning for Software Defined Networks (SDN)
was implemented using the NSL-KDD benchmark dataset. A subset of six features deemed to be of
importance to SDNs was manually selected for evaluation. Experimental results showed that an ac-
curacy score of 75.75% was obtained by the DNN-IDS. Authors in [5], proposed an IDS using Gain
Ratio (GR) measure for feature extraction and Artificial Neural Networks (MLPs) for classification.
The UNSW-NB15 dataset was employed for model evaluation with thirty attributes of the UNSW-
NB15 dataset being selected. The experimental results demonstrated that the developed model
(GR-ANN-MLP) achieved a test precision of 79.80% and test accuracy of 76.96% respectively.
In this work, the forty-one features present in the NSL-KDD dataset have been employed to ensure
sufficient accuracy of the training and testing by the developed model.

However, there is the need for continuous development of Deep learning based IDSs with improved
accuracies and detection rate, hence this paper. The contributions made by this paper include:

1. Development of a Deep Neural Network with an input layer, two hidden layers and an output
layer. The input and hidden layers were implemented with the Rectified Linear Unit (ReLU)
activation function, while the output layer was implemented with Sigmoid activation function
since a binary classification task was considered.

39

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

2. Adam optimizer was used with the learning rate while the Binary cross entropy loss function
was implemented to evaluate how well the developed DNN algorithm modeled the dataset.

3. Utilization of the NSL-KDD dataset with the developed deep neural network for intrusion
detection.

4. Grouping of different attacks present in the NSL-KDD dataset into one label named ‘attack’.

5. BinaryEncoder function was employed for encoding categorical variables and StandardScaler
function was employed for standardizing the data.

6. Development of a Deep learning model using fastai.tabular library.

7. The two deep learning models were compared for performance accuracy.

2. MATERIALS AND METHODS

Thematerials andmethods for developing the proposedDeep learningmodels for intrusion detection
are described in this section. FIGURE 1 shows the common architecture for the developed IDS.

Figure 1: Architecture for Proposed Intrusion Detection System

2.1 Importation of Dataset

As shown in FIGURE 1, the initial step consisted of importing the NSL-KDD dataset from the
official website of theUniversity of NewBrunswick, Canada. This was followed by exploratory data
analysis and feature engineering. The NSL-KDD dataset consists of a training portion of 125973
samples and a test portion 22544 samples.

40

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

2.2 Exploratory Data analysis

The imported training data was first described as shown in TABLE 1. Furthermore, no missing
or duplicate values were discovered in the data. However, some outliers were discovered in the
src_bytes and dst_bytes columns as shown in FIGURE 2.

2.3 Feature Engineering for DNN

The target variable was highly skewed and imbalanced as shown in FIGURE 3, hence there was a
need to class all attacks as one and encode in binary form so as to help reduce the data skew.

All attacks were encoded as ‘1’ and normal or benign samples were encoded as ‘0’, resulting in a
distribution of ‘0’=67343 and ‘1’=58630 samples respectively.

2.4 Data Preprocessing for DNN

At this stage, categorical variables in the data such as ’protocol_type’, ’service’ and ’flag’ were
encoded using the BinaryEncoder function. The ’attack’ and ’level’ columns were also dropped
from the data so as to prevent leakage that could bias the prediction process. Since theoutliers were
few, the StandardScaler function was further implemented for standardizing the data [6], to ensure
that feature distributions have mean of 0 and standard deviation of 1 as represented by Equation 1,
where 𝑧=standardized score of data point, 𝑥=given datapoint, 𝜇=mean and 𝜎=standard deviation.

𝑧 =
(𝑥 − 𝜇)

𝜎
(1)

2.5 Model Implementation for DNN

Neural Networks are composed of interconnected neurons such that each neuron receives input
data, performs some computation, and thereafter produces an output. The inputs are multiplied by
weights, summed up, and then passed through an activation function. In addition to the weights
by which inputs are multiplied, the Neural Networks also incorporate bias terms. A bias term
represents an additional and independent learnable parameter [7]. The developed model contained
four layers; one input, two dense hidden and an output layer respectively. The input and hidden
layers were implemented with the Rectified Linear Unit (ReLU) activation (Equation 2) for non-
linearity introduction into the model.

𝑅𝑒𝐿𝑈 (𝑧) = max(0, 𝑧) (2)

The output layer was implemented using the Sigmoid activation function (Equation 3) since binary
classification was the task being considered. The sigmoid function maps input values to the range
(0, 1), making it suitable for binary classification tasks [8]. The function maps any input to a value
between 0 and 1, making it useful for binary classification and logistic regression problems. The

41

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

Table 1: Description of NSL-KDD Dataset

S/N FEATURES DATA TYPE

0 duration int64
1 protocol_type object
2 service object
3 flag object
4 src_bytes int64
5 dst_bytes int64
6 land int64
7 wrong_fragment int64
8 urgent int64
9 hot int64
10 num_failed_logins int64
11 logged_in int64
12 num_compromised int64
13 root_shell int64
14 su_attempted int64
15 num_root int64
16 num_file_creations int64
17 num_shells int64
18 num_access_files int64
19 num_outbound_cmds int64
20 is_host_login int64
21 is_guest_login int64
22 count int64
23 srv_count int64
24 serror_rate float64
25 srv_serror_rate float64
26 rerror_rate float64
27 srv_rerror_rate float64
28 same_srv_rate float64
29 diff_srv_rate float64
30 srv_diff_host_rate float64
31 dst_host_count int64
32 dst_host_srv_count int64
33 dst_host_same_srv_rate float64
34 dst_host_diff_srv_rate float64
35 dst_host_same_src_port_rate float64
36 dst_host_srv_diff_host_rate float64
37 dst_host_serror_rate float64
38 dst_host_srv_serror_rate float64
39 dst_host_rerror_rate float64
40 dst_host_srv_rerror_rate float64
41 attack object
42 level object

42

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

Figure 2: Outlier distribution

43

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

Figure 3: High Data Skew

range of the function is (0,1), and the domain is (-infinity, +infinity) [9].

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(3)

In Equation 3, 𝑥 denotes the input data values. The cost function employed for the model was the
Binary Cross-Entropy (BCE) used for binary classification problems, where only two outcomes
are possible. It estimates the probability of an incorrect classification. The Binary cross-entropy
loss function actually calculates the average cross entropy for all data examples as represented by
Equation 3.

𝐿𝐵𝐶𝐸 = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 .log (𝑝 (𝑦𝑖)) + (1 − 𝑦𝑖) .log(1 − 𝑝 (𝑦𝑖)) (4)

In Equation 4, 𝑁 represents the number of data points, 𝑦𝑖 represents the actual class, 𝑝 (𝑦𝑖) is the
predicted probability of a data point being ‘attack’ and 1−𝑝 (𝑦𝑖) is the predicted probability of a data
point being ‘normal or no attack’. Adam optimizer was implemented for modifying the attributes
of the neural network and the model was then run through 500 epochs.

2.6 Implementation of Deep Learning Tabular Model

After carrying out the following preprocessing steps: encoding categorical variables, standardizing
numerical features using the TabularPandas class, the train_dataloader function was used to load the
training data and a learning rate of 0.001 was obtained for developing the Tabular model. Thereafter
fitting was carried out. The model was run through 10 epochs after which there was no significant
improvement in performance and training was stopped. The test_dataloader function was used with
the test data for final evaluation of the developed model on unseen data.

44

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

3. RESULTS

3.1 First Deep Learning Model (DNN)

The developed model was implemented on a single Jupyter notebook with Python 3.10.12 using
Keras 2.12.0 and TensorFlow 2.12.0 in the Google Colaboratory environment, which is an open-
source platform for machine Learning-based experiments [10]. The developed deep neural network
was trained based on the NSL-KDD train+ dataset. TABLE 2 represents a summary of the training
results for loss and accuracy measured over 1.

Table 2: Training Results for Deep Neural Network Model

EPOCH LOSS ACCURACY

1 0.6928 0.5350
2 0.6918 0.5346
3 0.6891 0.5346
4 0.6819 0.5346
5 0.6639 0.6851
...
496 0.0076 0.9976
497 0.0075 0.9976
498 0.0074 0.9976
499 0.0075 0.9976
500 0.0074 0.9976

The model was finally evaluated for its predictive ability for previously unseen or zero-day attacks
using the NSL-KDD test dataset. This portion of the NSL-KDD dataset contains seventeen attacks
that are not present in the training portion used for training the model. FIGURE 4 displays the
confusion matrix for the classification results while TABLE 3 describes the performance metrices
for final model evaluation as percentage values.

Figure 4: Confusion Matrix for Classification Results

45

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

Table 3: Binary Classification Test Results for Deep Neural Network Model

CLASS PRECISION RECALL F1-SCORE ACCURACY

NORMAL (0) 69 93 79 79
ATTACK (1) 93 68 79 79

3.2 Second Deep Learning Model (fastai Tabular)

Themodel was also developed in the Google Colaboratory environment. TABLE 4 below represents
a summary of the training results for loss and accuracy measured over 1. TABLE 5 presents the test
results for attack when the model was evaluated via the NSL-KDD test data.

Table 4: Training Results for fastai Tabular Model

EPOCH LOSS ACCURACY

0 0.225966 0.966579
1 0.102326 0.989005
2 0.047513 0.993133
3 0.034809 0.995158
4 0.027515 0.995396
5 0.020588 0.996229
6 0.017612 0.996587
7 0.019141 0.996467
8 0.016991 0.996706
9 0.016091 0.996626

Table 5: Test Results for fastai Tabular Model

CLASS LOSS ACCURACY

ATTACK 0.15813 0.841864

4. DISCUSSION

As seen in TABLE 2, the loss score had a steady decrease from the first epoch and achieved a steady
crescendo that oscillated between 0.0075 and 0.0074 as the 500𝑡ℎ epoch was approached where
training was stopped. Furthermore, the accuracy improved through the epoch runs and achieved a
steady value of 99.76% as the 500𝑡ℎ epoch was approached. These steady values represent excellent
training results for the developed model.

FIGURE 4 displays number of True Negative samples as 9053, number of False Positive samples
as 658, number of False Negative samples as 4096 and number of True Positive samples as 8737.
These outcomes resulted in the test scores for the performance metrices as displayed in Table 3
for binary classification. As shown, the model yielded test attack scores of 79% accuracy, 79%

46

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

F1-Score, 68% recall and 93% precision. These values represent an acceptable test performance
for the developed model. TABLE 4 shows that around the tenth epoch of training, the Tabular
model presented approximately similar results hence training was stopped at that epoch to yield
an approximate loss value of 0.16 and accuracy of 99.66%. However, as shown in TABLE 5, the
Tabular model achieved a loss value of 0.15813 and accuracy of 84.2% on the test data.

As observed above, the Tabular model outperforms the first DNN model in terms of accuracy for
attack prediction when it comes to unseen data or zero-day attacks. It thus relatively presents a more
favourable deep learning model for intrusion detection systems.

5. CONCLUSION

This work involved the development of an Intrusion Detection System Leveraging Deep Learning
Model Classification. Two deep learning models were developed, a Deep Neural Network (DNN)
with ReLU activation as well as Tabular model using the fastai deep learning library. The NSL-KDD
dataset was employed and preprocessed suitably for realizing the models. Training performance
metrices such as Loss and Accuracy were considered for both models, while test performance
metrics such as Recall, F1-Score, Precision and Accuracy were considered for evaluating the first
model. The Loss and Accuracy metrics were considered for testing the second model. Results
show that both models presented an acceptable performance while detecting attacks based on the
NSL-KDD dataset. However, the Tabular model performed better in terms of accuracy.

As a future scope of the work, suitable web interface or Application Programmable Interface (API)
could be developed to port the models into the production environment.

References

[1] Osa E, Orukpe PE, Iruansi U. Machine Learning Based Intervention for Security in Internet of
Health Things Systems. In: Proceedings of the 4th University of Benin annual research day;
2024.

[2] Rahman T. Intrusion Detection System Based on Deep Learning ,School of Science. Aalto
University; 2022.

[3] Hsu CM, Hsieh HY, Prakosa SW, Azhari MZ, Leu JS. Using Long-Short-Term Memory
Based Convolutional Neural Networks for Network Intrusion Detection. In: Int. wir. Internet
Conference Springer Cham. 2018;86-94.

[4] Tang TA, Mhamdi L, McLernon D, Zaidi SA, Ghogho M. Deep Learning Approach for
Network Intrusion Detection in Software Defined Networking. In: Int. Conf. Wireless Netw
Mobile Commun, WINCOM. IEEE PUBLICATIONS; 2016;258-263.

[5] Mebawondu JO, Alowolodu OD, Mebawondu JO, Adetunmbi AO. Network Intrusion
Detection System Using Supervised Learning Paradigm. Sci Afr. 2020;9:e00497.

[6] Available from: https://developers.google.com/machine-learning.

47

https://cybersecurityjournal.info/ | October 2024 Osa Edosa,et al

[7] Available from: http://pub.aimind.so/how-to-build-a-neural-network-from-scratch-a-step-by-
step-guide.

[8] Available from: https://medium.com/@evertongomede/activation-functions-and-loss-
functions-in-deep-learning-differences-and-overlaps.

[9] Available from: https://www.analyticsvidhya.com/blog/2023/01/why-is-sigmoid-function-
important-in-artificial-neural-networks/Accessed.

[10] G’eron A. Hands-on Machine Learning With Scikit-Learn, Keras, and Tensorflow. 1005
Gravenstein Highway North, Sebastopol, CA: O’Reilly Media, Inc.; 2019;95472.

48

	INTRODUCTION
	MATERIALS AND METHODS
	Importation of Dataset
	Exploratory Data analysis
	Feature Engineering for DNN
	Data Preprocessing for DNN
	Model Implementation for DNN
	Implementation of Deep Learning Tabular Model

	RESULTS
	First Deep Learning Model (DNN)
	Second Deep Learning Model (fastai Tabular)

	DISCUSSION
	CONCLUSION

